
CALLDORADO SDK VERSION 2.3 RE-ENGAGEMENT

Page 1 (6)

Contents

1 Overview .. 2

2 Class doc implementation .. 3

3 Overall flow and examples ... 3

4 Dynamic Re-engagement event ... 5

Version history

Version Date Description Resp.

A 13/06-2016 First release TH

B 21/12-2016 Review/Comments and feedback from SEB TH/BJ

CALLDORADO SDK VERSION 2.3 RE-ENGAGEMENT

Page 2 (6)

1 Overview
The dynamic re-engagement is available from CDO 2.3. The feature allows a publisher to
dynamically re-engage his users and therefore increase user engagement by deep-linking directly
into his app from every Caller ID screen. This can extend the lifetime value of the app.

This is achieved through the Calldorado website where an Engagement field needs to be set up
being of the type “Dynamic”, along with a field name and a corresponding deeplink URL. The
Engagement field is simply an action on the after call screen that contains an image along with a
motivational message that enables the user to tap on the action. Whenever a user taps on the
action, Calldorado launches the hosting app with a special parameter (the deeplinkUrl, which is
explained below) which the app then can utilize to run custom logic, e.g. taking the user to a
special place within the app or launch a website.

The publisher is able to dynamically re-engage his users at runtime through his own code. He
needs to use this line within his app when he wants to setup a dynamic re-engagement field:

Calldorado.setupDynamicReEngagementField (<Context context>, <ReEngagementField
reEngagementField>);

The context can be of any (e.g. Application, Activity, Service and so on).
The “reEngagementField” object consists of the following attributes:

 fieldname
The fieldName represents the re-engagement id, which will be used in order to show the
reengagement field on the after call screen. This name should also be set on the Calldorado
website, otherwise the reengagement field won’t be shown.

 deeplinkUrl
The deeplinkUrl will be sent back to the publisher app’s launcher activity, when the user
taps on the reengagement field on the after call screen. The publisher is then able to react
upon the deeplinkUrl.

 Message
The message is shown on the after call screen reengagement field.

 imageId
The imageId determines what internal image that should be shown; can be between 1 - 9
(if not set, the default reengagement image will be shown – The icons can be seen on
my.calldorado for your app)

 imageByteArray
The byte array will be a custom image set by the publisher (if a custom image is not
wanted, “null” can be passed in as parameter.

 startDate
The start date for the reengagement field (default current date - The SDK will validate
whether current date is within or equal to <startDate> and <endDate> and if not, the
reengagement field will not be shown)

 endDate
The end date/expiry date for the reengagement field (default the maximum date possible –

CALLDORADO SDK VERSION 2.3 RE-ENGAGEMENT

Page 3 (6)

if current date is not within or equal to <endDate>, the reengagement field will not be
shown)

2 Class doc implementation

As shown on the image, the publisher is able to construct a reengagement field using one of these
four constructors. fieldName, deeplinkUrl and message must be set when constructing the
reengagement field.
For each attribute, a getter and a setter is provided.

3 Overall flow and examples

1. As the first thing, the publisher has to setup the reengagement field on the website with a
fieldName and mark it as “Dynamic.”

2. Publisher sets up a reengagement field in his code and calls
Calldorado.setupDynamicReEngagementField (<Context>, <reEngagementField>);

3. This Reengagement is broadcasted into Calldorado and stored locally in a SQLite database.
4. When entering the after call screen, we fetch the reengagement field by combining the

locally stored client reengagement with the reengagement setup fetched from the server -
If the reengagement fieldName fetched from the client is recognized using the server
reengagement fieldName, the reengagement is shown on the after call, otherwise the
reengagement field will not be shown.

5. When the user taps on the field, the user is navigated back to his launcher activity in his
app, in which he can get the intent data containing the deeplinkUrl.

CALLDORADO SDK VERSION 2.3 RE-ENGAGEMENT

Page 4 (6)

Example:

1. The Publisher logs in to his account on my.calldorado, navigates to the app he wants to create a
dynamic reengagement for and creates a dynamic reengagement by providing a fieldName – The
fieldName should be exactly the same used in the app in order to have it shown on the after call
screen.

2. Publisher sets up a reengagement field in his code and make a call from e.g. a button click:
Below is just an example with values provided. The values can be anything set by the Publisher.
Please make sure that the fieldName is equal to the one created on my.calldorado. The deeplink
Url and the message can be text messages that suites you.

The client calls the Calldorado.setupDynamicReEngagementField(context, reEngagementField)
method passing the actual context, in this case an activity, and a reengagement field object with
the following attributes:

 TestSpeeddialerEngagement (fieldname) – should be the same name on the website.
 Google play url (deeplinkUrl) – what the client wants to do when pressing the

Reengagement field on the after call screen. In this case, it is a Google Play URL that shows
my app on Google Play.)

 Visit speedialer on… (message) - The actual message shown in the reengagement field on
the after call screen.

3. When the method is executed, the reengagement field attributes will be broadcasted into
Calldorado and stored locally.

4. Finally, when the client enters the after call screen, we fetch the reengagement we want to
show using the values set in publisher’s app. If a valid reengagement can be fetched, it is shown on
the after call screen.

5. Whenever a user taps on the reengagement field on the after call screen, the user is navigated
back to the publisher’s launcher activity inside his app. Here, the user is able to “listen” to the
received intent and do the appropriate action based on the deeplinkUrl provided. It is done by
doing following:

CALLDORADO SDK VERSION 2.3 RE-ENGAGEMENT

Page 5 (6)

Inside the onCreate in the launcher activity, you simply use this code and do the appropriate action
depending on the actual path you are receiving. The path is the deeplinkUrl that is provided in the
dynamically created ReEngagement.

4 Dynamic Re-engagement event
In case the Publisher wants to get notified whenever the reengagement field is shown on the after
call screen, he can implement a Broadcast Receiver that listens to the event. This might be very
useful if the publisher wants to update the reengagement field dynamically after a call has been
made. The Publisher can simply react to this event callback.

The procedure is as follows:

1. The publisher has to create a class which extends BroadcastReceiver that listens to the
following action: “com.calldorado.android.intent.DYNAMIC_RE_ENGAGEMENT_SHOWN”

2. The Publisher has to register this Broadcast Receiver in his manifest.

The following example illustrates what needs to be done:
I have called my Broadcast Receiver for “DynamicReEngagementReceiver”, however, you can
call it whatever you want to.

CALLDORADO SDK VERSION 2.3 RE-ENGAGEMENT

Page 6 (6)

The above example shows a custom class called “DynamicReEngagementReceiver” that listens to
the required action. In order to update the reengagement field, it’s important to know that you
MUST get the reEngagementName from the intent bundle and use that as part of your new
dynamicReEngagement field setup.

Don’t forget to add the created Broadcast Receiver in your manifest.

